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Bosonization, vicinal surfaces, and hydrodynamic fluctuation theory

Herbert Spohn*
Zentrum Mathematik and Physik Department, TU Mu¨nchen, 80290 Mu¨nchen, Germany

~Received 4 January 1999; revised manuscript received 26 August 1999!

Through a Euclidean path integral we establish that the density fluctuations of a Fermi fluid in one dimen-
sion are related to vicinal surfaces and to the stochastic dynamics of particles interacting through long range
forces with inverse distance decay. In the surface picture one easily obtains the Haldane relation, and identifies
the scaling exponents governing the low energy, Luttinger liquid behavior. For the stochastic particle model we
develop a hydrodynamic fluctuation theory, through which in some cases the large distance Gaussian fluctua-
tions are proved nonperturbatively.@S1063-651X~99!03212-2#

PACS number~s!: 05.30.Fk, 05.30.Jp, 05.70.Np
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I. INTRODUCTION

As pointed out by Haldane some time ago@1,2#, spinless
fermions in one dimension interacting through a short ra
potential have universal ground state correlations. The
versal properties are computed on the basis of
Tomanaga-Luttinger Hamiltonian@3–5# where low energy
characteristics turn out to be labeled by two free paramet
traditionally denoted as the renormalized sound velocityvs
andK. These parameters must be matched to the microsc
Fermi liquid under consideration. In fact, we will see th
they are given by suitable second derivatives of the gro
state energy per length. The two most prominent predicti
of the Luttinger liquid scenario are the following.

~i! The momentum distribution behaves as

^a†~k!a~k!&.uk2kFua sgn~k2kF!1~regular part!
~1.1!

close to the Fermi momentumkF . Compared to the nonin
teracting case, the Fermi fluid loses its gap atkF , and the
Fermi ‘‘surface’’ is retained as power law singularity on
with anomalous exponenta5 1

2 @K1(1/K)22#.
~ii ! The density fluctuations in the ground state are

verely suppressed and strongly correlated. Nevertheless
have Gaussian statistics. This is a consequence of
bosonization of the density field, which is the basic obser
tion leading to the exact solution of the Tomanaga-Luttin
Hamiltonian@6#.

The anomalous momentum distribution~1.1! was studied
by Benfattoet al. @7# through a rigorous implementation of
renormalization group zooming onto the Fermi surface. T
present paper focuses on the density fluctuations~ii !. We
recall first that for the ideal Fermi fluid the structure fun
tion, i.e., the Fourier transform of the density-density cor
lations is given by

S~k!5H uku/2p for uku<2kF

r for uku>2kF ,
~1.2!

*Electronic address: spohn@mathematik.tu-muenchen.de
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with kF5pr the Fermi momentum andr the density. The
interaction smoothens the cusp at 2kF , similarly to Eq.~1.1!,
as proved recently by Benfatto and Mastropietro@8#. For
density fluctuations the behavior neark50 is of interest.
Here the interaction has a much less spectacular effec
only changes the openening angle of the cusp~and of course
modifies the straight piece!. Here we plan to go beyond th
static two-point function and to study the smallk,v behavior
of all n-point functions, including their frequency behavio
i.e., we plan to study the generating functional of the dens
field for large space-time distances, at which the Gauss
statistics should be recovered.

As will be explained in detail below, the density fluctu
tions are most conveniently investigated through the p
integral for the world lines of the fermions. This form lead
to two other physical interpretations. One may think of t
world lines as steps of a vicinal surface, and use the stat
cal mechanics of surfaces. In this picture the Gaussian fl
tuations are fairly immediate, and Haldane’s parameters
identified as suitable second derivatives of the surface
sion. In the second interpretation one regards the fermio
world lines as trajectories of particles whose motion is th
governed by certain stochastic differential equations. S
stochastic particle systems are usually described throug
hydrodynamic type fluctuation theory. In our case the forc
between the particles decay like the inverse distance, and
therefore long ranged. We will develop a suitable modific
tion of the standard hydrodynamic fluctuation theory. In t
framework of a stochastic particle system, at least for so
cases, we prove the Gaussian fluctuations without go
through the perturbative double expansion inn and the inter-
action strength.

Different physical interpretations of the same theoreti
model lead to alternative approximation schemes. Prope
which look very deep in one formulation are physically o
vious in another. We regard it as interesting that on
dimensional Fermi liquids allow for three distinct physic
interpretations, and we try to explore their interconnectio

II. BASIC MODELS AND THEIR PATH INTEGRALS

Let us start with the two prototypical models.
~i! Fermions on a ring@0,l # interacting through a shor
6411 © 1999 The American Physical Society
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6412 PRE 60HERBERT SPOHN
range potential. The Hamiltonian reads

H52(
j 51

N
1

2

]2

]xj
2

1
1

2 (
iÞ j 51

N

V~xi2xj !. ~2.1!

We have setm515\. V is a short range potential, andxj
P@0,l # with periodic boundary conditions. By the Pauli e
clusion principle, the ground state wave functionc has to
vanish at$xi5xj% ~Dirichlet boundary conditions!. For den-
sity fluctuations the sign changes inc do not matter. There-
fore, equivalently, we may regard Eq.~2.1! as the Hamil-
tonian of bosons with a hard core. Formally, this correspo
to adding an infinitely strong repulsived potential toV.

~ii ! Fermions on the periodic lattice@1, . . . ,l #. In second
quantized form the Hamiltonian reads

H5 (
x51

l

$2ax
†ax112ax11

† ax2Dax
†axax11

† ax11%,

~2.2!

al 115a1. For future use, we stated only the particular ca
of a nearest neighbor interaction. Through the Jord
Wigner transformation~2.2! turns into theXXZ Hamiltonian
as

H5 (
x51

l H 2
1

2
~sx

1sx11
1 1sx

2sx11
2 !2Dsx

3sx11
3 J , ~2.3!

with periodic boundary conditionssW l 115sW 1, wheresW x are
the Pauli spin matrices at sitex.

Both Hamiltonians~2.1! and~2.3! generate a path integra
for the statistical weight of fermionic world lines. For E
~2.1! the free measuresPo areN independent Brownian mo
tions x1(t), . . . ,xn(t). By the Pauli exclusion principle the
are constrained not to cross, i.e.

xj~ t !,xj 11~ t ! mod l for all t, j 51, . . . ,N, ~2.4!

which ensures the Dirichlet boundary condition at$xi5xj%.
The statistical weight of the world lines is then given by

1

Z
P0 expF2

1

2 (
iÞ j 51

N E dt V„xi~ t !2xj~ t !…GxNC , ~2.5!

whereZ is the normalizing partition function andxNC is the
indicator function of the set defined in Eq.~2.4!. xNC re-
stricts the path integral~2.5! to noncrossing paths only. In
bosonic language this constraint corresponds to an infini
repulsived interaction.

The statistical weight generated by Eq.~2.3! is the same
as in Eq.~2.5!. Only the Brownian motionxj (t) is to be
replaced by a continuous time random walk on@1, . . . ,l #
with jump rate 1 to the right and left neighbors. In our e
ample we picked the particular interaction potentialV(x)5
2D for uxu51, andV(x)50 otherwise.

One physical picture suggests itself immediately. We c
think of the fermionic world lines as the trajectories of
stochastic particle system. In fact, in the limitt→` it will be
a stationary Markov process. It is a diffusion process in c
~i! and a jump process in case~ii !. The quantum mechanica
free Bose field of density fluctuations corresponds to spa
s

e
-

ly

n

e

e-

time Gaussian fluctuations in a stochastic particle syst
This is the usual hydrodynamic fluctuation theory as go
erned by a linear Langevin equation. Unfortunately, the n
crossing constraint results in repulsive long range (1/x)-type
forces between the particles. Therefore the standard hy
dynamic theory, developed for short range forces, does
apply. In Sec. IV we will explain the required modification
which are in fact surprisingly small.

An alternative physical picture is also well known@9,10#,
but less immediate. We think ofxj (t) as a step of unit heigh
for a vicinal surface. More explicitly, we introduce a heig
function h(x,t) for the height of a crystal surface relative
the x,t reference plane. Then

]

]x
h~x,t !5(

j 51

N

d„x2xj~ t !…. ~2.6!

In the t direction the average slope vanishes, whereas in
x direction it is given by the particle densityr5N/ l . Periodic
boundary conditions for the particles means that the surf
is extended by repetition at average slopeN/ l along thex
axis.

The stepped surfaceh(x,t) fluctuates with a statistica
weight given by Eq.~2.5!. In general, surface fluctuations a
expected to be governed by a free massless Gaussian fie
the infrared limit with a strength determined by the matrix
second derivatives of the surface free energy. Since it c
cides with the ground state energy of Hamiltonian~2.1!, we
have a direct way to identify the parameters in the Lutting
Hamiltonian. The Haldane relation@1# then follows as a
simple consequence.

The surface picture also indicates the limitations of t
Luttinger liquid concept. The surface free energy may ha
cusps and/or flat pieces. The former case corresponds
roughening transition where logarithmic fluctuations are s
pressed to order 1 fluctuations. The latter case is step bu
ing. The slope ‘‘segregates’’ into macroscopic regions. T
steps are closer together than expected by naive countin

To give a brief outline, in Sec. III we develop the surfa
picture in more detail. In Sec. IV we explore the hydrod
namic fluctuation theory for the dynamics of world lines a
its consistency with the surface picture. We argue for
validity of a linear Langevin equation governing the dens
fluctuations. The approximations can be controlled for
Calogero-Sutherland model and for a general system w
short range interaction provided the two-point functi
scales. The necessary computations are provided in the
pendixes.

III. SURFACE FLUCTUATIONS AND BOSONIZATION

For the sake of concreteness we first discuss fermions
a lattice, cf. Hamiltonians~2.2! and ~2.3!. The relations de-
rived below are general, however. We use thes3 represen-
tation, and it is convenient to set up a corresponding no
tion. We definehx5(11sx

3)/2. Thenhx50 and 1, and we
interpret hx51 as a surface step at sitex. A whole step
configuration is denoted byh. ThenH of Eq. ~2.3! in thes3

representation becomes a linear operator acting on funct
f (h), and is given by
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H f ~h!52 (
x51

l

~hx2hx11!2f ~hxx11!2D(
x51

l

hxhx11f ~h!,

~3.1!

where the periodic boundary conditionh l 115h1 is under-
stood.hxx11 stands for the configurationh with occupations
at sitesx andx11 interchanged. The path integral is gene
ated by the transfer matrix (e2tH)hh8 , t>0. For an isolated
step the first term in Eq.~3.1! yields a symmetric, time con
tinuous random walk with a jump rate 1 to its neighbors. F
several steps (hx2hx11)2 ensures the noncrossing co
straint.2D(x51

l hxhx11 is a potential. Thus we see that E
~3.1! indeed generates a path integral of the form of Eq.~2.5!
with xj (t) replaced byhx(t) and P0 standing for indepen-
dent random walks on the lattice@1, . . . l #. For later use we
define the steps in space-time byhx(t)51(0), if at ‘‘time’’
t there is a~no! step at sitex, x51, . . . ,l and 0<t<T. The
steps have a statistical weight given by Eq.~2.5!. Clearly the
number of steps isN5(x51

l hx(t) independent oft. In the
dynamic picture we regardhx51 as a particle andhx50 as
no particle at sitex . The surface steps are then the wo
lines of the particles. Particles jump to their neighbori
sites, but are never created and destroyed. We will
‘‘step’’ and ‘‘particle’’ interchangeably.

In the crystallographic literature our model is known
terrace-step-kink model. It describes a high symmetry cry
surface miscut by a small angle. Such a vicinal surface c
sists of a regular array of monoatomic steps. Through th
mal activation the steps meander but they do not cros
terminate. The slope of the vicinal surface imposes the s
density and their average orientation. The terraces are
constant height pieces between steps and kink refers to a
corner.

The surface defined through Eq.~2.6!, with xj (t) replaced
by hx(t), is tilted in thex direction with sloper5N/ l . A
complete picture emerges only if we tilt the surface a
along thet direction. To do so, we define the step curre
Jxx11(t) through the bond (x,x11). Jxx11(t) is a sequence
of d functions located at those times when a step jum
betweenx and x11. The d function carries a weight11
(21) if the jump is fromx to x11 (x11 to x). The tilt
along thet coordinate is enforced by the additional constra

(
x51

l E
0

T

Jxx11~ t !dt5NaT, ~3.2!

which implies that on the average each step has the drifa.
If the step variableshx(t),x51, . . . ,l , 0<t<T, are

given, then, by definition

h~x11,t !2h~x,t !5hx~ t !. ~3.3!

Equation~3.3! can be integrated to yield

h~x,t !5 (
y51

x

hy~0!2E
0

t

Jxx11~s!ds, ~3.4!

with an arbitrary choice for the constant of integration.
At this point it is convenient to go from the canonic

prescription to the grand canonical prescription. The varia
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conjugate to the number of particles is the chemical poten
m, and we introducel as conjugate variable to the tota
current ~3.2!. Thereby we obtain the transfer matr
(e2tH)hh8 , with the Hamiltonian

H f ~h!52 (
x51

l

$„elhx~12hx11!1e2l~12hx!hx11…

3 f ~hxx11!1Dhxhx11f ~h!2mhxf ~h!%

5Hl~m,l! f ~h!. ~3.5!

The exponential of the current gives weightel to a right
jump and weighte2l to a left jump and the exponential o
the particle number yields the potentialm(xhx . Equation
~3.5! is the Hamiltonian of the asymmetricXXZ model.

To makeH symmetric we have to continuel analytically
to the imaginary axis, i.e. to replacel by 2 il with l real.
Tracing back to the Fermi Hamiltonian~2.2!, we obtain

H5 (
x51

l

$2eilax
†ax112e2 ilax11

† ax

2Dax
†axax11

† ax111max
†ax%. ~3.6!

This means that the dispersion relation22 cosk is replaced
by 22 cos(k2l). In the low energy limit the dominant con
tributions have a total momentum̂N&l. Thus the~analyti-
cally continued! l regulates the average fermionic current
the ring @1, . . . ,l #, l50 corresponding to zero current.

The thermodynamics of the surface is governed by
surface tensions(u) depending on the slopeu5(r,ra). s
is convex up. To relate this to Hamiltonian~3.5!, it is con-
venient to define the Legendre transformŝ of s by

ŝ~v!5 inf
u
„s~u!2v•u…. ~3.7!

ŝ is convex down, and in terms ofH in Eq. ~3.5! it is defined
by

ŝ~m,l!52 lim
T,l→`

1

lT
tr exp@2THl~m,l!#. ~3.8!

If we take first the limit T→`, then Eq. ~3.8! becomes
El(m,l)/ l , with El the ground state energy ofHl . Thus the
surface tension is simply the Legendre transform of
ground state energy ofHl per site:

ŝ~m,l!5 lim
l→`

1

l
El~m,l!. ~3.9!

Thermodynamic fluctuation theory suggests that a sm
height fluctuationdh relative to the average slopeu has a
probability proportional to

expF2
1

2 (
i , j 51

2

s i j ~u!~“ idh!~“ jdh!G , ~3.10!

where s i j (u)5]2s(u)/]ui]uj . Thus on a large scale th
height fluctuations should be Gaussian with a covariance
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S (
i , j 51

2

s i j ~u!kikj D 21

~3.11!

in Fourier space. Equation~3.11! is the covariance of a free
massless bosonic field in its Euclidean version. Fluctuati
of two-dimensional surfaces grow logarithmically and a
therefore not stationary. They become stationary by tak
an x derivate, which according to Eq.~3.3! yields the step
density. In Fourier space we only have to multiply byk1

2.
The thermodynamic fluctuation theory for surfaces pred
the low energy behavior of the density fluctuations for t
world lines of Eq.~3.5!.

We find it convenient to keep thet dependence and usek
for the Fourier transform with respect tox. Then, according
to Eqs.~3.11! and ~3.3!, we have

^hx~ t !hx8~0!&2r2.E dk eik(x2x8) 1
2 cukue2gukuutu2 ikvt

~3.12!

for largeux2x8u andutu, where the parameters are defined

s115~g21v2!/gc, s1252v/gc, s2251/gc.
~3.13!

The density fluctuations are Gaussian on the scale where
~3.12! is valid.

For the expression in Eq.~3.10! to make sense,s(u) must
be twice differentiable atu and the matrix of second deriva
tives D2s(u).0. Already for the simple model~3.5! with
nearest neighbor step-step interaction only, this conditio
not always satisfied.s is known from the Bethe ansatz@11#.
For D.22 atr5 1

2 , a50, the steps align in antiferromag
netic order. Thereby surface fluctuations are strongly s
pressed, from logarithmic order to order 1. Changing either
or a destroys this roughening transition. We refer to R
@12# for the behavior close to the transition.

On the attractive side,D.0, steps may bunch to giv
macroscopic patches of slopeu5(1,0) and slopeu5(0,0).
This phase is bordered by the stochastic line, where2H of
Eq. ~3.5! generates a stochastic time evolution@11#. Clearly,
the condition is

D52 coshl ~3.14!

for all r. To reexpress Eq.~3.14! in terms ofa, we needa
5]e/]l, which is not known in closed form. For smalll
from linear response, we havea5r(12r)2 sinhl, which
implies that, for smalla,

Dc521„a/2r~12r!…2. ~3.15!

Coming back to Eq.~3.12!, we note that the density fluc
tuations decay asguku and propagate with velocityv. The
static (t50) covariance is12 cuku, which reflects that steps ar
s

g

s

q.

is

p-

.

stiffly arranged because of the noncrossing constraint.
parametersg, v, andc can be expressed through the grou
state energy as

c25det D2ŝ5~]2e/]m2!~]2e/]l2!2~]2e/]m]l!2,
~3.16!

g5c/~]2e/]m2!, v5~]2e/]m]l!/~]2e/]m2!,

where we used Eqs.~3.9! and ~3.13!. These relations are
valid in general.

Haldane@1# observed that for Luttinger fluids the param
eters in the low energy effective bosonic action are not in
pendent. This is easily rederived from Eq.~3.16!. In the no-
tation of Haldane,

vs5g, vN5dm/dr. ~3.17!

The average current isj 5]e/]l and in linear response
j (l)5 j (l0)1vJ(l0)(l2l0), i.e.,

vJ5]2e/]l2. ~3.18!

The Haldane relation reads

vNvJ5vs
2 , ~3.19!

i.e.,

~]2e/]m2!21~]2e/]l2!5g2, ~3.20!

which is to be compared with

~]2e/]m2!21~]2e/]l2!5g21v2 ~3.21!

by Eq. ~3.16!. Thus the Haldane relation holds atv50,
equivalently atl50, which he used implicitly by setting
j (l0)50 in the linear response. The parameterK mentioned
in Sec. I is given by

K5AvJ /vN5S ]2e

]l2

]2e

]m2D 21/2

. ~3.22!

For l50, Hamiltonian~3.5! is symmetric. In the dynamic
picture we have a time-reversible jump process for the p
ticles for which detailed balance is satisfied. As in the sh
range case this gives rise to an Einstein relation, and
Haldane relation can be viewed as a particular case.

For Brownian steps, as governed by the Hamiltonian~2.1!
with Dirichlet conditions at$xi5xj%, some simplifications
compared to the general case occur. The drift~equal to the
tilt along t) is enforced by the constraint

E
0

T

dt ẋj~ t !5aT, ~3.23!

j 51, . . . ,N. Such a drift can be trivially removed by th
global change of coordinatesyj (t)5xj (t)2at. In contrast to
the terrace-step-kink model, the tilting costs only in elas
energy for each step individually. LetEN be the ground state
energy of Eq.~2.1!, and define

e~r!5 lim
N,l→`,N/ l 5r

1

l
EN. ~3.24!
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Then the ground state energy per unit volume at drifta is
given by

e~r,a!5e~r!1 1
2 ra2. ~3.25!

Comparing with Eq.~3.13! and usingu5(r,ar), we obtain
v5a, as expected, and

c5Ar/e9~r!, g5Are9~r!. ~3.26!

The Haldane relation iscg5r.
We conclude this section by stating a precise conject

For the terrace-step-kink model we average over«21 sites
with some smooth test functionf. From the surface picture
thex andt coordinates must be on equal footing. Hence ti
is also scaled as«21, and we introduce the fluctuation fiel

j«~ f ,t !5(
x

f ~«x!„hx~«21t !2r…. ~3.27!

Note that we are not in the standard central limit theor
setting. We sum over«21 sites, but expect a fluctuation o
order 1 only. In the same spirit, for the Brownian steps
define the fluctuation field as

j«~ f ,t !5(
j

f „«xj~«21t !…2rE dx f~«x!. ~3.28!

Conjecture. We consider the path measure generated
Hamiltonian~3.1! in the limit T→` at fixed tilt a, cf. Eq.
~3.2!, and in the limitl→` at a fixed densityr5N/ l . This
path measure governs the fluctuation field~3.27!. If e(r,a)
or e(m,l), respectively, is sufficiently smooth~at least twice
differentiable!, then

lim
«→0

j«~ f ,t !5j~ f ,t ! ~3.29!

in distribution. The limit is jointly Gaussian with covarianc

^j~ f ,t !j~g,0!&5E dk
1

2
cukue2gukutue2 ikvt f̂ ~k!* ĝ~k!.

~3.30!

The parametersc,g, andv are given by Eq.~3.16!. Corre-
spondingly, for fermions in the continuum with Hamiltonia
~2.1! and path measure~2.5!, the fluctuation field~3.28! sat-
isfies limit ~3.29! with v5a in Eq. ~3.30!.

IV. HYDRODYNAMIC FLUCTUATION THEORY

In the limit T→`, for fixed l, the statistics of the step
become stationary int and are governed by a stochastic pr
cess which by construction is Markov. To determine its g
erator, letc be the ground state andE the ground state en
ergy for H of either Eqs.~2.1! or ~3.1!, which satisfy

Hc5Ec. ~4.1!

In the case of Eq.~2.1!, we havec.0 except at coinciding
points xj5xi , iÞ j , wherec(x)50. For Eq.~3.1! we first
have to specify the sector(x51

l hx
35N. Then, for fixedN,
e.

e

e

y

-
-

e2tH has a strictly positive integral kernel, and by th
Perron-Frobenius theorem the ground statec is unique and
c.0. The~backwards! generator of the Markov process fo
the steps is defined by

L f 52c21~H2E!c f ~4.2!

as acting on functionsf over the configuration space. Th
Markov process hasc2 as a unique invariant measure.

We carry out this construction for theXXZ model in the
s3 representation and obtain, in the notation of Eq.~3.1!,

L f ~h!5 (
x51

l

„elhx~12hx11!1e2l~12hx!hx11…cxx11~h!

3@ f ~hxx11!2 f ~h!#. ~4.3!

L is the generator for a stochastic lattice gas, where parti
jump to their neighboring sites. The exchange ratecxx11(h)
between sitesxandx11 is given by

cxx11~h!5c~hxx11!/c~h!. ~4.4!

The jumps to the right are biased by the factorel, and those
to the left bye2l. If l50, H is symmetric, and the stochas
tic evolution satisfies detailed balance.

Rates ~4.4! are determined through the ground sta
which is not known in general. Only forD50 does one have
an explicit ground statec. If we denote byx1 , . . . ,xN the
positions of the particles in the sector(x51

l hx5N, then, in
this sector,

c~x1 , . . . ,xN!5 )
i , j 51

N

usin„p~xi2xj !/ l …u. ~4.5!

Therefore the exchange rates are given by

cxx11
(N) 5 expF2~hx112hx! (

y51
yÞx,x11

l

3XlnS sin„p~y2x11!/ l …

sin„p~y2x!/ l … D ChyG . ~4.6!

Taking formally the infinite volume limit yields

cxx115expF2~hx112hx! (
yÞx,x11

XlnS y2x11

y2x D ChyG .
~4.7!

Equation ~4.7! teaches us several points. The rates
repulsive: more particles to the left ofx favors a right jump
of the particle atx. The rates are long ranged, which mea
that the finite range intuition is no longer applicable. Sin
ln„(y2x21)/y2x…>2(y2x)21, at infinite volume the
rates may be infinite. The dynamics with rates~4.7! is then
defined only forucu2 for almost all configurations. Becaus
the caseD50 maps to a free fermion theory, one can co
struct the infinite volume ground state as a measure on
ticle configurations and the Markov semigroupeLt in the
correspondingL2 space@13,14#. This implies an almost cer
tain existence of the dynamics. If one adds the nearest ne
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bor interactionD, one expects exchange rates to be qual
tively similar to Eq.~4.7!. We are not aware of any result i
this direction.

For the Brownian stepsL is the generator of a diffusion
process given by

L f ~x!5(
j 51

N S aj~x!
]

]xj
1

]2

]xj
2D f ~x!, ~4.8!

x5(x1 , . . . ,xN). The drift on thej th particle is

aj52
]

]xj
ln c. ~4.9!

Thus lnc is the potential for the diffusion process.
For Brownian steps with exclusion only, i.e.,V50, one

finds that

aj~x!5 (
i 51,iÞ j

N

cot„p~xj2xi !/ l …. ~4.10!

For l→` this expression converges to

aj~x!5 (
i ,iÞ j

1

xj2xi
, ~4.11!

i.e. to a repulsive 1/x force as for the lattice gas. The mod
with drift ~4.11! was introduced by Dyson@15#. Its potential
is formally given by

2(
iÞ j

lnuxi2xj u. ~4.12!

In fact, Dyson added a confining external potential, which
quadratic, and considered Eq.~4.11! for finite N.

We conclude that density fluctuations in the fermion
ground state may equally well be studied through the s
chastic dynamics~4.3! and ~4.8!. If the potential is short
ranged, there is a well developed machinery known as
drodynamic fluctuation theory. One argues~and proves in
many model systems@16,17#! that density fluctuations rela
diffusively and are driven by a white noise random flux. Th
corresponds to the linear Langevin equation

]

]t
j~x,t !5D

]2

]x2
j~x,t !1As

]

]x
W~x,t !. ~4.13!

D is the bulk diffusion coefficient, ands is the bulk mobil-
ity. They are related throughs5xD with x the static com-
pressibility of the lattice gas.W(x,t) is space-time white
noise. The spatial derivative ensures the conservation of
number of particles. The stationary measure for Eq.~4.13! is
Gaussian with a covariance matrix (s/2D). In passing we
mention that in the short range case~4.13! holds only forl
50, i.e. in the symmetric case. ForlÞ0 one switches ove
to the Kardar-Parisi-Zhang~KPZ! universality class. It is
characterized by the dynamic exponentz53/2, rather than
z52 as in Eq.~4.13!. The fluctuations are non-Gaussia
@19#.

Returning to the long range case of interest here, we h
already obtained the limiting Gaussian fluctuations in
conjecture. We writej( f ,t)5*dx f(x)j(x,t), and note that
-

s

-

y-

he

ve
e

Eq. ~3.30! determines a semigroup int. Therefore, Eq.~3.30!
must be the~stationary! solution of the linear Langevin equa
tion

]

]t
j~x,t !5S 2gA2]2/]x22v

]

]xD j~x,t !1Acg
]

]x
W~x,t !,

~4.14!

which is a surprisingly minimal modification compared
the short range case@Eq. ~4.13!#. g plays the role ofD, and
c that ofs. The crucial difference is that a Fourier modeeikx

decays ase2gukuutu rather than ase2Dk2utu.

V. SCALING LIMIT

We support our general conjecture by arguing that
stochastic particle evolution is close to the Langevin eq
tion ~4.14!. We will do so on a fairly formal level. In par-
ticular, we simply work in infinite volume. In the Appen
dixes we explain how parts of our arguments can be m
rigorous.

Our strategy is most easily explained for the Browni
step model. The equations of motion are

d

dt
xj~ t !5aj„x~ t !…1ḃ j~ t !, ~5.1!

whereḃ j (t) is normalized white noise independent for ea
j. The scaled fluctuation field satisfies then the differen
equations

d

dt
j«~ f ,t !5(

j
f 8„xj

«~ t !…aj„x
«~ t !…1«(

j
f 9„xj

«~ t !…

1A«(
j

f 8„xj
«~ t !…ḃ j~ t !. ~5.2!

Herexj
«(t)5«xj («

21t), and we used the scale invariance

white noise asḃ j («
21t)5A«ḃ j (t).

The second term in Eq.~5.2! converges tor*dx f9(x)
50. The third term converges to a space-time Gaussian m
sure with covariance

d~ t2t8!rE dx f8~x!g8~x!. ~5.3!

This uses only that with respect to the distribution given
ucu2 we have«( j f («xj )→r*dx f(x) in probability as«
→0. Equation~5.3! is in accordance with Eq.~4.14!, since
cg5r. Thus we are ‘‘only’’ left with to show that~recall
that v50)

E
0

t

ds(
j

f 8„xj
«~s!…aj„x

«~s!…ds

.2E
0

t

(
j

gA2]2/]x2f „xj
«~s!…ds. ~5.4!

If so, the integrated version of Eq.~5.2! becomes a closed
equation and agrees with Eq.~4.14!.
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To establish Eq.~5.4! is certainly the hard part of the
matter. In Appendix A we prove that, if we assume the tw
point function to scale, the substitution~5.4! holds. This is of
interest because the scaling of the two-point function by
self already implies that the fluctuations are Gaussian
would not know how to obtain such a result otherwise.

A further example for which the substitution~5.4! holds is
the Calogero-Sutherland model@18#, where the pair potentia
is proportional to 1/x2. If the particles are on a ring@0,l # and
if we take all the image potentials into account, then
ground state wave function of the Calogero-Sutherla
model is

c~x1 , . . . ,xN!5 )
i , j 51

N

usin„p~xi2xj !/ l …ub/2, ~5.5!

b.0. By Eq. ~4.9! the corresponding drift is given by

aj~x1 , . . . ,xN!5
b

2 (
i 51,iÞ j

N
p

l
cot„p~xi2xj !/ l …, ~5.6!

which in the limit l→` yields

aj~x!5 (
i 51,iÞ j

N
b

2

1

xj2xi
. ~5.7!

Compared to Eq.~4.8! only the strength is changed.
The ground state energy per length ise(r)5 1

24 b2p2r3

~note that our kinetic energy is2 1
2 D). Therefore, by Eq.

~3.26!,

c5
2

pb
, g5

1

2
pbr. ~5.8!

For the Calogero-Sutherland model the substitution in
~5.4! holds without averaging in time. This is somewhat s
prising and very particular for the 1/x2 potential. To com-
plete the argument one needs the central limit result of
hansson@20#,

lim
«→0

K expF(
j

f ~«xj !G L 5expF1

2

1

pbE dkukuu f̂ ku2G ,
~5.9!

for smooth test functions with*dx f(x)50, wherê •& is the
average in the ground state~5.5! in the infinite volume limit.
The instructive computation is explained in Appendix B.

Turning to the terrace-step-kink model the situation
more complicated, as may be anticipated from the sh
range exchange rates@21#. We consider the symmetric cas
and setl50. Using the method of martingales one can sh
that the variance of the time-integrated noise is given by

^c01~h!&t5S (
h

c~h!c~h01!~h02h1!2D t, ~5.10!

which is to be compared with the prediction

cg5
]2e

]l2U
l50

~5.11!
-

-
I

e
d

.
-

o-

rt

from Eq. ~4.14!. Note thatv50, sincel50. By second
order perturbation theory inl we obtain

]2e

]l2
5(

h
c~h!c~h01!~h02h1!2

2(
x

(
h

c~h01!~h02h1!~H2E!21

3~hx2hx11!c~hxx11!. ~5.12!

Thus Eq.~5.11! holds only if the second term vanishes.
For D50 the sum(x(hx2hx11)c(hxx11) is the total

currentJ acting onc. SinceJc50, we conclude that for free
fermions Eq.~5.11! holds. In this case the two-point functio
is explicitely known and we can use the argument of App
dix A to prove the conjecture. Alternatively then-point den-
sity correlations can be written in terms of two-point fun
tions. By applying the closed loop theorem, one ag
concludes that the scaling limit is Gaussian with covarian
~3.30! @14,22#.

If DÞ0, the second term in Eq.~5.12! is not expected to
vanish. This can be verified by expanding (H2E)21 to sec-
ond order inD. Thus the martingale term~5.10! yields the
wrong noise strength in the Langevin equation—the h
mark of the so-called nongradient systems. The drift term

E
0

t

ds(
x

f 8~«x!cxx11„h~«21s!… ~5.13!

can no longer be substituted deterministically as in Eq.~5.4!.
Somewhere hidden there must be an extra noise term. W
for short range lattice gases this mechanism is understoo
the beautiful work of Varadhan and Yau@21# ~cf. also Ref.
@23#!, the situation looks rather complicated for the lon
range case considered here.

VI. CONCLUSIONS

We tied together three, at first sight, disconnected piec
the Luttinger liquid behavior at low energy, surface fluctu
tions, and the hydrodynamic fluctuation theory for the s
chastic dynamics of world lines. In the surface picture o
can easily identify the universal low energy limit of the de
sity fluctuations for one-dimensional Fermi fluids. Of cours
as an input one needs a variant of the Einstein fluctua
formula. The remainder of the argument is then straightf
ward. In particular, we show that the parameters of
Tomanaga-Luttinger Hamiltonian must be matched to s
able second derivatives of the energy and length, cf. E
~3.16!. To our knowledge, this has not been discussed w
sufficient clarity before.

In the interpretation of the world lines as stochastic d
namics the particles have long range interactions, which
sult from the Dirichlet boundary condition at coinciding p
sitions and thus from the Pauli exclusion principle. W
develop a fluctuation theory for the long range case. In fa
the only modification is to replace in the drift term the L
placian, 2]2/]x2, by the nonlocal integral operato
A2]2/]x2. Heuristically, following the arguments of To
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managa, theuku decay comes from linearizing the dispersi
relation of the particles at the Fermi surface. The not
obvious point is that an interaction changes only the pre
tor g but not the decay law itself. At least for the Caloger
Sutherland Hamiltonian, the mechanism behind such a re
malization could be fully elucidated.
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APPENDIX A

For the Brownian steps we define the structure funct
S(k,t) by

K S (
j

f „xj~ t !…D S (
j

g~xj ! D L 5E dk f̂~k!* g~k!S~k,t !,

~A1!

with *dx f(x)505*dx g(x). The average is in the station
ary process at infinite volume with densityr. The existence
of this limit and its spatial ergodicity is assumed here.
principle, this could be avoided by considering a finite circ
of length l, for which the stationary process exists, and
scaling l 5«21r21 andN5«21. We adopt this strategy fo
the Calogero-Sutherland model in Appendix B. In essen
Fourier space becomes then discrete,kP2pZ.

Our real assumption is the scaling of the structure fu
tion as

lim
«→0

«21S~«k,«21t !5
c

2
ukue2gukuutu, ~A2!

with c5Ar/e9, and g5Are9. We want to prove that Eq
~A2! implies

lim
«→0

K F E
0

t

ds(
j

aj„x
«~s!…f 8„xj

«~s!…

1E
0

t

ds(
j

gA2]2/]x2f „xj
«~s!…G2L 50.

~A3!

We note that the time average is needed. This reflects tha
system takes a while to adjust to local perturbations.

We work out the square and use thatL is symmetric,
^F(LG)&5^G(LF)&, and

j ~ f 8!~x!5(
j

aj~x! f 8~xj !1(
j

1

2
f 9~xj !5Ln~ f !~x!,

~A4!

n~ f !~x!5(
j

f ~xj !.

Under our scaling the termn( f 9) vanishes. We have
o
c-
-
r-

n

e,

-

he

E
0

t

ds1E
0

t

ds2^ j «~ f 8,s1! j «~ f 8,s2!&

5E
0

t

ds1S E
0

s1
ds2^ j «~ f 8!eL(s12s2)«21

j «~ f 8!&

1E
s1

t

ds2^ j «~ f 8!eL(s22s1)«21
j «~ f 8!& D

5E
0

t

ds1S 2E
0

s1
ds2

]

]s2
^ j «~ f 8!eL(s12s2)«21

n«~ f !&

1E
s1

t

ds2

]

]s2
^ j «~ f 8!eL(s22s1)«21

n«~ f !& D
522t^ j «~ f 8!n«~ f !&12E

0

t

ds
]

]s
^n«~ f !eLs«21

n«~ f !&

522t^ j «~ f 8!n«~ f !&12^n«~ f ,t !n«~ f !&

22^n«~ f !n«~ f !&. ~A5!

For the first summand we have

^ j «~ f 8!n«~ f !&52«21
1

2 (
j

K ]

]xj
n«~ f !

]

]xj
n«~ f !L .

~A6!

Therefore, in the limit«→0 we obtain

E dku f̂ u2
„tuku2r2cuku~12e2gukuutu!…. ~A7!

The second term reads, withg52gA2]2/]x2f ,

22E
0

t

ds1E
0

t

ds2^n
«~g,s1! j «~ f 8,s2!&

522E
0

t

ds1F E
0

s1
ds2^n

«~g!eL(s12s2)«21
j «~ f 8!&

1E
s1

t

ds2^ j «~ f 8!eL(s22s1)«21
n«~g!&G

522E
0

t

ds1F2E
0

s1
ds2

]

]s2
^n«~g!eL(s12s2)«21

n«~ f !&

1E
s1

t

ds2

]

]s2
^ j «~ f 8!eL(s22s1)«21

n«~g!&G
522E

0

t

ds@22^n«~g!n«~ f !&12^n«~g!eLs«21
n«~ f !&#.

~A8!
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By assumption, this expression converges to

E dku f̂ u2„22tgck212ukuc~12e2gukut!…. ~A9!

The third term is given by

E
0

t

ds1E
0

t

ds2^n
«~g,s1!n«~g,s2!&, ~A10!

which by assumption converges to

E
0

t

ds1E
0

t

ds2E dku f̂ u2g2
c

2
uku3e2gukuus12s2u

5E dku f̂ u2
„tgck22cuku~12e2gukut!…. ~A11!

Using the fact thatgc5r, the sum of the three terms van
ishes, as claimed.

To complete the argument, one notes that

M «~ f ,t !5E
0

t

ds(
j

f „«xj~«21s!…dbj~s! ~A12!

is a Martingale function with square

M ~ f ,t !25E
0

t

ds«(
j

f 8„«xj~«21s!…21M1
«~ f ,t !,

~A13!

whereM1
«( f ,t) is again a Martingale function. We now a

sume the validity of a law of large numbers as

lim
«→0

«(
j

g~«xj !5rE dx g~x!. ~A14!

Then, under suitable tightness, in the limit«→0

M ~ f ,t !25tE dx f8~x!21M1~ f ,t ! , ~A15!

with both M ( f ,t) and M1( f ,t) Martingale functions. This
implies thatM ( f ,t) is Brownian motion int with covariance
*dx f8(x)2. We refer to Ref.@18# for a more complete dis
cussion.

APPENDIX B

We consider the Calogero-Sutherland model on a fin
ring of length l. The density isr5N/ l . We scale the posi-
tions with «21. Setting«52p/ l , we scale back to the circle
@0,2p#. ThenN5«212pr. Since the density scales, we s
2pr51 and useN instead of«. After these transformation
the ground statec25e2bV with the logarithmic potential

V52 (
i , j 51

N

lnusin„~xi2xj !/2…u. ~B1!

The drift is then
e

aj~x!52
]

]xj
bV~x!5

b

2 (
i 51
iÞ j

N

cot„~xj2xi !/2…. ~B2!

For this model we show the validity of substitution~5.4!
without averaging int.

More explicitly, we have to show that

1

N (
j 51

N

aj~x! f 8~xj !5
1

2N (
i , j 51

iÞ j

N

b cot„~xj2xi !/2…f 8~xj !

.(
j 51

N

g~xj !, ~B3!

where

g~x!5
b

4pE0

2p

dy cot„~x2y!/2…f 8~y!, ~B4!

in the sense of the Cauchy principal part. Since we are o
ring, f has discrete Fourier coefficients f̂ k

5(1/2p)*0
2pdx eikxf (x). We assume that( ukuuku3 f̂ k,`.

Note that ĝk52(b/2)uku f̂ k . To show Eq.~B3! we use a
result of Johansson@20# which states

lim
N→`

1

N K (
j 51

N

h~xj !L 5ĥ0 , ~B5!

and, providedĥ0505 f̂ 0,

lim
N→`

K S (
j 51

N

h~xj !D S (
i 51

N

f ~xi !D L 5
2

b (
k

ukuĥk* f̂ k .

~B6!

Let us work out the square. The first term is

K S (
j 51

N

g~xj !D 2L , ~B7!

which by Eq.~B6! tends in the limitN→` to

2

b (
k

ukuuĝku25
b

2 (
k

uku3u f̂ ku2. ~B8!

For the second term we use (]/]xi)e
2bV5aie

2bV. Then

22
1

N K S (
j 51

N

aj f 8~xj !D S (
i 51

N

g~xi !D L
5

2

N (
i , j 51

N K ]

]xj
„f 8~xj !g~xi !…L

5
2

N K S (
j 51

N

f 9~xj !D S (
i 51

N

g~xi !D L
1

2

N K (
j 51

N

f 8~xj !g8~xj !L . ~B9!
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By Eq. ~B6! the first summand vanishes, and by Eq.~B5! the
second summand converges to

2(
k

uku2 f̂ k* ĝk522b(
k

uku3u f̂ ku2. ~B10!

For term number 3 we use (]2/]xi]xj )e
2bV5aiaje

2bV

1(]ai /]xj )e
2bV. Then

1

N2K S (
j 51

N

aj f 8~xj !D S (
i 51

N

ai f 8~xi !D L ~B11!

5
1

N2 (
i , j 51

N K ]

]xi

]

] j
„f 8~xi ! f 8~xj !…

2S ]

]xj
ai D f 8~xi ! f 8~xj !L

5
1

N2 S K S (
j 51

N

f 9~xj !D S (
i 51

N

f 9~xi !D L
la
1K (
j 51

N

f 9~xj !
2L 12K (

j 51

N

f 8~xj ! f-~xj !L D
1

1

N2

b

8 K (
i , j 51

N

usin„~xi2xj !/2…u22

3@ f 8~xi !2 f 8~xj !#
2L .

By Eq. ~B5! the first summand vanishes. The second su
mand converges to

b

8
~2p!22E

0

2p

dxE
0

2p

dyusin„~x2y!/2…u22
„f 8~x!2 f 8~y!…2

5
b

2 (
k

uku3u f̂ ku2. ~B12!

Adding the three terms we conclude that the sum vanish
s
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