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Bosonization, vicinal surfaces, and hydrodynamic fluctuation theory
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Through a Euclidean path integral we establish that the density fluctuations of a Fermi fluid in one dimen-
sion are related to vicinal surfaces and to the stochastic dynamics of particles interacting through long range
forces with inverse distance decay. In the surface picture one easily obtains the Haldane relation, and identifies
the scaling exponents governing the low energy, Luttinger liquid behavior. For the stochastic particle model we
develop a hydrodynamic fluctuation theory, through which in some cases the large distance Gaussian fluctua-
tions are proved nonperturbative[\51063-651X99)03212-3

PACS numbse(s): 05.30.Fk, 05.30.Jp, 05.70.Np

I. INTRODUCTION with ke=mp the Fermi momentum ang the density. The

As pointed out by Haldane some time ddo2], spinless :Sterarl(c)::/lg(rjl srr;:eor'][trllens thBee(:‘Il;:ltF’)[(fq:aZn(sjlT)IE;L¥JOieEE%(l#]g}
fermions in one dimension interacting through a short rang%eniit fluctuation); tr){e behavior nele0 is Fc)n‘ int.erest
potential have universal ground state correlations. The uni: y '

versal properties are computed on the basis of thé—|ere the interaction has a much less spectacular effect. It

Tomanaga-Luttinger Hamiltoniaf8—5] where low energy only changes the openening angle of the olasp of course

characteristics turn out to be labeled by two free parametersmOOIIerS the straight piegeHere we plan to go beyond the

traditionally denoted as the renormalized sound veloeity s‘;atllcl: two-p0|?t functlon .an? qu stuf]y .th]? smialby bebhar:/ or

andK. These parameters must be matched to the microscop% a n—p?lnt unctlc;)nsr,l Including t eflr re_querllcyé he gwor.,
Fermi liquid under consideration. In fact, we will see that L&+ We pian to study the generating functional of the density
they are given by suitable second derivatives of the grountgeId for large space-time distances, at which the Gaussian

state energy per length. The two most prominent predictiongta;';t'vc\:/isllSt?ec’lél:(j Feﬁnr:g?xedreetda.il below. the density fluctua-
of the Luttinger liquid scenario are the following. P ' Y

(i) The momentum distribution behaves as ftions are most conve_niently investiggted thrqugh the path
integral for the world lines of the fermions. This form leads
to two other physical interpretations. One may think of the
(a'(k)a(k))=|k—kg|* sgr(k—kg) + (regular parx world lines as steps of a vicinal surface, and use the statisti-
(1.1 cal mechanics of surfaces. In this picture the Gaussian fluc-
tuations are fairly immediate, and Haldane’s parameters are
close to the Fermi momentuky. Compared to the nonin- identified as suitable second derivatives of the surface ten-
teracting case, the Fermi fluid loses its gagkat and the  Sion. In the second interpretation one regards the fermionic
Fermi “surface” is retained as power law singularity only World lines as trajectories of particles whose motion is then
with anomalous exponeni=1[K + (1/K)—2]. governed by certain stochastic differential equations. Such
(i) The density fluctuations in the ground state are seStochastic particle systems are usually described through a
verely suppressed and strongly correlated. Nevertheless th&ydrodynamic type fluctuation theory. In our case the forces
have Gaussian statistics. This is a consequence of tHEetween the particles decay like the inverse distance, and are
bosonization of the density field, which is the basic observatherefore long ranged. We will develop a suitable modifica-
tion leading to the exact solution of the Tomanaga-Luttingeftion of the standard hydrodynamic fluctuation theory. In the
Hamiltonian[6]. framework of a stochastic particle system, at least for some
The anomalous momentum distributi¢h 1) was studied ~C€ases, we prove the Gaussian fluctuations without going
by Benfattoet al.[7] through a rigorous implementation of a through the perturbative double expansiomiand the inter-
renormalization group zooming onto the Fermi surface. Théction strength. _ _
present paper focuses on the density fluctuations We Different physical interpretations of the same theoretical
recall first that for the ideal Fermi fluid the structure func- Model lead to alternative approximation schemes. Properties

tion, i.e., the Fourier transform of the density-density corre-Which look very deep in one formulation are physically ob-
lations is given by vious in another. We regard it as interesting that one-

dimensional Fermi liquids allow for three distinct physical

K/2m for [K|=2k interpretations, and we try to explore their interconnections.
a or = E

for |k|=2k (1.2
p i Il. BASIC MODELS AND THEIR PATH INTEGRALS
Let us start with the two prototypical models.
*Electronic address: spohn@mathematik.tu-muenchen.de (i) Fermions on a ring0,l] interacting through a short
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range potential. The Hamiltonian reads time Gaussian fluctuations in a stochastic particle system.
\ This is the usual hydrodynamic fluctuation theory as gov-

9? erned by a linear Langevin equation. Unfortunately, the non-
QJF i#zj:=1 V(X =Xj). (2.3) crossing constraint results in repulsive long range)-type

) forces between the particles. Therefore the standard hydro-
We have sem=1=#. V is a short range potential, ang dynamic theory, devel_oped fo.r short range force.s{ do_es not
e[0,] with periodic boundary conditions. By the Pauli ex- @PPly- In Sec. IV we will explain the required modifications,
clusion principle, the ground state wave functignhas to ~ Which are in fact surprisingly small.
vanish at{x;=x;} (Dirichlet boundary conditions For den- An alternative physical picture is also well knoyd,10],
sity fluctuations the sign changes gndo not matter. There- but less immediate. We think af(t) as a step of unit height
fore, equivalently, we may regard E.1) as the Hamil- for a vicinal surface. More explicitly, we introduce a height
tonian of bosons with a hard core. Formally, this correspondéUnction h(x,t) for the height of a crystal surface relative to

N| =

1
H=—E >

=1

to adding an infinitely strong repulsiv@ potential toV. the x,t reference plane. Then
(ii) Fermions on the periodic lattidd, . .. | ]. In second 5 N
uantized form the Hamiltonian reads
q ﬁ—xh(x,t)=]21 S(x—x(1)). (2.6
| =
H=> {-ala,,—al,,a,—Aalaal, a1} recti i i
= XGx+17 Gx+19% XOXCx+ 19x+ 1)1 In thet direction the average slope vanishes, whereas in the

(2.2 X direction it is given by the particle densipe= N/I. Periodic
boundary conditions for the particles means that the surface
ay.1=ay. For future use, we stated only the particular casds extended by repetition at average sldgé along thex
of a nearest neighbor interaction. Through the Jordanaxis.
Wigner transformationi2.2) turns into thex XZ Hamiltonian The stepped surfach(x,t) fluctuates with a statistical
as weight given by Eq(2.5). In general, surface fluctuations are
expected to be governed by a free massless Gaussian field in
the infrared limit with a strength determined by the matrix of
second derivatives of the surface free energy. Since it coin-
cides with the ground state energy of Hamiltoni@nl), we
with periodic boundary conditions, ;= o, whereo, are  have a direct way to identify the parameters in the Luttinger
the Pauli Spin matrices at site Hamiltonian. The Haldane relatiO[ﬂ.] then follows as a
Both Hamiltoniang2.1) and(2.3) generate a path integral Simple consequence.

for the statistical weight of fermionic world lines. For Eq. ~ The surface picture also indicates the limitations of the
(2.1) the free measureB, areN independent Brownian mo- Luttinger liquid concept. The surface free energy may have

|
1
H:le —5(0')1(0')%+1+0')2(0'§+1)—A0)3(0'3+1 , (2.3

tionsx;(t), . .. X,(t). By the Pauli exclusion principle they cusps and/or flat pieces. The former case corresponds to a
are constrained not to cross, i.e. roughening transition where logarithmic fluctuations are sup-
pressed to order 1 fluctuations. The latter case is step bunch-
Xj(t)<xj41(t) mod | forall t,j=1,... N, (2.4 ing. The slope “segregates” into macroscopic regions. The
steps are closer together than expected by naive counting.
which ensures the Dirichlet boundary condition{at=x;}. To give a brief outline, in Sec. 1ll we develop the surface

The statistical Welght of the world lines is then given by picture in more detail. In Sec. IV we exp|0re the hydrody-

1 LN namic fluctuation thheorrly for t?e dynamics of world Iine}s anr:j
its consistency with the surface picture. We argue for the

zPo exr{ 2 i;;ﬂ j de V(1) =xj(1) validity of a linear Langevin equation governing the density

fluctuations. The approximations can be controlled for the

whereZ is the normalizing partition function anghc is the  Calogero-Sutherland model and for a general system with

indicator function of the set defined in EQ.4). xnc re-  short range interaction provided the two-point function

stricts the path integral2.5) to noncrossing paths only. In scales. The necessary computations are provided in the Ap-

bosonic language this constraint corresponds to an infinitelpendixes.

repulsived interaction.

The statistical weight generated by HE8.3) is the same

Xnc, (2.5

as in Eq.(2.5. Only the Brownian motiorx;(t) is to be || SURFACE FLUCTUATIONS AND BOSONIZATION
replaced by a continuous time random walk [dhy . .. J]

with jump rate 1 to the right and left neighbors. In our ex-  For the sake of concreteness we first discuss fermions on
ample we picked the particular interaction potenWék)= a lattice, cf. Hamiltonian$2.2) and(2.3). The relations de-
—A for |[x|=1, andV(x)=0 otherwise. rived below are general, however. We use #herepresen-

One physical picture suggests itself immediately. We caration, and it is convenient to set up a corresponding nota-
think of the fermionic world lines as the trajectories of ation. We definen,=(1+o3)/2. Theny,=0 and 1, and we
stochastic particle system. In fact, in the lirhit oo it will be interpret »,=1 as a surface step at site A whole step
a stationary Markov process. It is a diffusion process in caseonfiguration is denoted by. ThenH of Eq. (2.3) in the o
(i) and a jump process in cage). The quantum mechanical representation becomes a linear operator acting on functions
free Bose field of density fluctuations corresponds to spacef(#), and is given by
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' ' conjugate to the number of particles is the chemical potential
Hf(n)z—E (ny— r;x+1)2f(7f‘x“)—AE Ny x+1(71), m, and we introducex as conjugate variable to the total
x=1 x=1 current (3.2). Thereby we obtain the transfer matrix

(3.9) (e"*),, . with the Hamiltonian
where the periodic boundary conditiay ;= 7, is under- [
stood.»***1 stands for the configuration with occupations Hf(5)=— 2, {(€ 7(1— 7ys1)+€ ML= 5y) 7xs1)
at sitesx andx+ 1 interchanged. The path integral is gener- x=1

ated by the transfer matrixe('"'), .., t=0. For an isolated 1
step th{a first term in E(J[S.l)(yie)lag a symmetric, time con- XEC )+ A f() = gt ()}

tinuous random walk with a jump rate 1 to its neighbors. For =H,(u,\) (7). (3.5
several steps #f,— 74,1)°> ensures the noncrossing con-

straint. — AS! _, 7,741 is a potential. Thus we see that Eq. The exponential of the current gives weighk to a right
(3.1) indeed generates a path integral of the form of @)  jump and weigh™ to a left jump and the exponential of
with x;(t) replaced byz,(t) and P, standing for indepen- the particle number yields the potentialX,7,. Equation

dent random walks on the latti¢d, . . .1]. For later use we (3.9 is the Hamiltonian of the asymmetricXZ model.
define the steps in space-time py(t)=1(0), if at “time” To makeH symmetric we have to continue analytically
t there is a(no) step at sitex, x=1, ... | and O<t<T. The to the imaginary axis, i.e. to repladeby —i\ with \ real.

steps have a statistical weight given by E25). Clearly the ~ Tracing back to the Fermi Hamiltonia@.2), we obtain
number of steps iNzE'X:lnx(t) independent ot. In the |

dynamic picture we regarg,=1 as a particle ang;,=0 as _ inat Zinat
no particle at sitex . The surface steps are then the world H_Zl {—etaac—e May 8

lines of the particles. Particles jump to their neighboring

sites, but are never created and destroyed. We will use —Aala,al, a,, 1+ pala,l. (3.6
“step” and “particle” interchangeably. . ) . ) ]

In the crystallographic literature our model is known as 1his means that the dispersion relatier? cosk is replaced
terrace-step-kink model. It describes a high symmetry crystd?y —2 cosk—\). In the low energy limit the dominant con-
surface miscut by a small angle. Such a vicinal surface contfibutions have a total momentugiN)\. Thus the(analyti-
sists of a regular array of monoatomic steps. Through thercally.contmue()l)\ regulates the average fermionic current on
mal activation the steps meander but they do not cross dhe ring[1, ... ], A=0 corresponding to zero current.
terminate. The slope of the vicinal surface imposes the step The thermodynamics of the surface is governed by the
density and their average orientation. The terraces are thrface tensiowr(u) depending on the slope=(p,pa). o
constant height pieces between steps and kink refers to a stépconvex up. To relate this to Hamiltonid8.5), it is con-

corner. venient to define the Legendre transfoomof o by

The surface defined through BQ.6), with x;(t) replaced .
by 7,(t), is tilted in thex direction with slopep=N/Il. A o(v)=inf(o(u)—v-u). 3.7
complete picture emerges only if we tilt the surface also u

along thet direction. To do so, we define the step current

Jyvs 1(t) through the bondx,x+1). J,..1(t) is a sequence ¢ is convex down, and in terms &f in Eq. (3.9 it is defined
of & functions located at those times when a step jump®Y

betweenx and x+1. The § function carries a weight- 1

(—1) if the jump is fromx to x+1 (x+1 to x). The tilt o) =— lim itrexp:—TH|(,u M. (3.8
along thet coordinate is enforced by the additional constraint ’ i 1T ’

! T If we take first the limitT—«, then Eq.(3.8) becomes
Zl 0 Juxr1(t)dt=NaT, (3.2 E,(w,\)/1, with E; the ground state energy bf,. Thus the
surface tension is simply the Legendre transform of the
which implies that on the average each step has the @rift 9round state energy &, per site:
If the step variablesn,(t),x=1,...)], O<t<T, are

. a . 1
given, then, by definition o(,N)=lim TEI(Mv)\)- (3.9
| -
h(x+1t) —h(x,t) = n,(t). (3.3
. _ _ Thermodynamic fluctuation theory suggests that a small
Equation(3.3) can be integrated to yield height fluctuationsh relative to the average slopehas a
. probability proportional to
t
=3, 7(0)- [ Jura(9ds 34 L2
y exp — 5 HE:l o (u)(Vish)(V;sh)|,  (3.10

with an arbitrary choice for the constant of integration.
At this point it is convenient to go from the canonical where crij(u)=(92<r(u)/(9ui<9uj. Thus on a large scale the
prescription to the grand canonical prescription. The variabléeight fluctuations should be Gaussian with a covariance
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2 -1 stiffly arranged because of the noncrossing constraint. The
E aij(Wkik; (3.11 parameters, v, andc can be expressed through the ground
hi=1 state energy as

2_ 20— (226) 902)( 2el IN2) — (52 2
in Fourier space. Equatiof8.11) is the covariance of a free € —detD o =("€/du")(o"€lIN") = (9"€ldpaN)”,
massless bosonic field in its Euclidean version. Fluctuations (el 9u (0] 9N (26l d i 3.
of two-dimensional surfaces grow logarithmically and are y=cl(5°elou®), v=(d"elduiN)/(s"eliu),

therefore not stationary. They become stationary by taking;ore we used Eqg3.9 and (3.13. These relations are
an x derivate, which according to E¢3.3) yields the step 4id in general. ' T

density. In Fourier space we only have to multiply ko _ Haldane[1] observed that for Luttinger fluids the param-
The thermodynamic fluctuation theory for surfaces predictsters in the low energy effective bosonic action are not inde-
the low energy behavior of the density fluctuations for thependent. This is easily rederived from E8.16. In the no-
world lines of Eq.(3.5). tation of Haldane,

We find it convenient to keep thedependence and uge

for the Fourier transform with respect o Then, according Vs=7v, Vn=duldp. (3.17
to Egs.(3.11) and(3.3), we have

16

The average current i$=de/dN and in linear response
J(M)=](Ao) +Vi(No)(A=Xp), i.e.,

<77x(t)77x’(0)>_p22J dk @<CX)3clk|e kit kvt v,= d2el N2, (3.18
(3.12 _
The Haldane relation reads
for large|x—x'| and|t|, where the parameters are defined by VaVI=V2, (3.19
5. o ie.,
o11=(y +v)lyc, o=—Vvlyc, oy=1/ycC.
(3.13 (9%el du?) " L(d%el IN?) = v, (3.20

. . . which is to be compared with
The density fluctuations are Gaussian on the scale where Eq. P

(3.12 is valid. (9%el 9u?)~Y(%el IN?) = y?+v? (3.21
For the expression in E@3.10 to make sensey(u) must

be twice differentiable at and the matrix of second deriva- by Eq. (3.16. Thus the Haldane relation holds at=0,

tives D20 (u)>0. Already for the simple mode3.5 with  equivalently at\ =0, which he used implicitly by setting

nearest neighbor step-step interaction only, this condition i$(\,)=0 in the linear response. The paramefementioned

not always satisfiedr is known from the Bethe ansaftzl]. in Sec. | is given by

ForA>—2 atp=3, a=0, the steps align in antiferromag-

netic order. Thereby surface fluctuations are strongly sup- e o2\

pressed, from logarithmic order to order 1. Changing either K=v,lvy= N2 942 3.22
or «a destroys this roughening transition. We refer to Ref. K

[12] for the behavior close to the transition. For A\ =0, Hamiltonian(3.5) is symmetric. In the dynamic

On the attractive sidep>0, steps may bunch to give pjcture we have a time-reversible jump process for the par-
macroscopic patches of slope=(1,0) and slopas=(0,0). ticles for which detailed balance is satisfied. As in the short
This phase is bordered by the stochastic line, whete of  range case this gives rise to an Einstein relation, and the
Eq. (3.5 generates a stochastic time evolut[dd]. Clearly,  Haldane relation can be viewed as a particular case.
the condition is For Brownian steps, as governed by the Hamiltor{ad)

with Dirichlet conditions at{x;=x;}, some simplifications
A=2 coshh (3.14 cpmpared t_o the general case occur..The defual to the
tilt along t) is enforced by the constraint

for all p. To reexpress E(3.14) in terms ofa, we needw T o
= gel I\, which is not known in closed form. For small jo dtx()=aT, (3.23
from linear response, we hawe=p(1—p)2 sinh\, which
implies that, for smalkr, j=1,... N. Such a drift can be trivially removed by the
global change of coordinatgs(t) =x;(t) — at. In contrast to
) the terrace-step-kink model, the tilting costs only in elastic
Ac=2+(al2p(1=p))*. (3.19 energy for each step individually. L& be the ground state
energy of Eq.(2.1), and define

Coming back to Eq(3.12), we note that the density fluc- 1
tuations decay ay|k| and propagate with velocity. The e(p)= lim ZE,. (3.24
static t=0) covariance ig c|k|, which reflects that steps are N, —e,N/I=p |
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Then the ground state energy per unit volume at drifis e ' has a strictly positive integral kernel, and by the

given by Perron-Frobenius theorem the ground states unique and
L >0. The (backward$ generator of the Markov process for
e(p,a)=e(p)+zpa’. (329 the steps is defined by
Comparing with Eq(3.13 and usingu=(p,ap), we obtain Lf=—y YH-E)yf 4.2

v=a, as expected, and
as acting on function$ over the configuration space. The

c=\ple"(p), v=+p€'(p). (3.2 Markov process hag? as a unique invariant measure.
o We carry out this construction for théXZ model in the
The Haldane relation isy=p. o° representation and obtain, in the notation of Ejd),

We conclude this section by stating a precise conjecture.
For the terrace-step-kink model we average ovet sites
with some smooth test functich From the surface picture, Lf(7)= >, (€ 7x(1— 7:1)+€ 1= 1) 7+ 1)Cxxr1(7)
thex andt coordinates must be on equal footing. Hence time =1
is also scaled as !, and we introduce the fluctuation field X[f( ) —f(9)]. 4.3

L is the generator for a stochastic lattice gas, where particles
jump to their neighboring sites. The exchange &tg 1(7)
between sitexandx+1 is given by

Note that we are not in the standard central limit theorem

setting. We sum ovet ~* sites, but expect a fluctuation of Caxcr 1(7) = (7 Y( ). (4.9

order 1 only. In the same spirit, for the Brownian steps we . . .
define the fluctuation field as The jumps to the right are biased by the faady and those

to the left bye ™. If A=0, H is symmetric, and the stochas-

g&(f,w:gf(sx)(nx(e*1t>—p). (3.27

. tic evolution satisfies detailed balance.
e(f,0=2 f(ex(e t))—Pf dx f(ex). (3.28 Rates (4.4) are determined through the ground state,
! which is not known in general. Only f&x=0 does one have
Conjecture. We consider the path measure generated by explicit ground statey. If we denote byx,, ... xy the

Hamiltonian (3.1) in the limit T—c at fixed tilt «, cf. Eq.  POsitions of the particles in the sectdt_; 7,=N, then, in
(3.2), and in the limitl - at a fixed densitp=N/I. This  this sector,

path measure governs the fluctuation fi€3d27). If e(p,a) N
ore(u,\), respectively, is sufficiently smootlat least twice _ : .y
differentiable, then P(Xq, .o XN) i<jH=1 |sin(zr(x;—x))/D]. (4.5
lim &°(f,t)=§&(f,t) (3.29  Therefore the exchange rates are given by
e—0
|
in distribution. The limit is jointly Gaussian with covariance . = exp{ (1= 1)
1 y#yxfxl+1
(&(f,)£(9,0)= f dkclkle™"Kfle™ ™ (k)* g (k). sin(m(y—x+1)/1)
(3.30 ( ( sin(mr(y—x)/1) ))”V 4.6
The parameters,y, andv are given by Eq(3.16. Corre- ) o o
spondingly, for fermions in the continuum with Hamiltonian Taking formally the infinite volume limit yields
(2.1) and path measur.5), the fluctuation field3.28 sat- w41
isfies limit (3.29 with v=a in Eq. (3.30. cwl:ex;{ ey S (m(y )ny |
y#XX+1 y—X
(4.7

IV. HYDRODYNAMIC FLUCTUATION THEORY Equation (4.7) teaches us several points. The rates are
In the limit T—o0, for fixed |, the statistics of the steps repulsive: more particles to the left affavors a right jump
become stationary ihand are governed by a stochastic pro-©f the particle ai. The rates are long ranged, which means
cess which by construction is Markov. To determine its genthat the finite range intuition is no longer applicable. Since
erator, lety be the ground state arlthe ground state en- IN((y—x—1)ly—x)=—(y—x)"*, at infinite volume the

ergy forH of either Eqs(2.1) or (3.1), which satisfy rates may be infinite. The dynamics with ratds?) is then
defined only for||? for almost all configurations. Because
Hy=Ey. (4.1)  the caseA=0 maps to a free fermion theory, one can con-

struct the infinite volume ground state as a measure on par-
In the case of Eq(2.1), we havey>0 except at coinciding ticle configurations and the Markov semigroep' in the
points xj=x;, i#, where(x)=0. For Eq.(3.1) we first correspondind-? space[13,14]. This implies an almost cer-
have to specify the sectdﬂ'len% N. Then, for fixedN, tain existence of the dynamics. If one adds the nearest neigh-
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bor interactionA, one expects exchange rates to be qualitaEg. (3.30 determines a semigroup inTherefore, Eq(3.30
tively similar to Eq.(4.7). We are not aware of any result in must be théstationary solution of the linear Langevin equa-

this direction.

For the Brownian stepk is the generator of a diffusion

process given by

N 9 2
Lf(x)=121 (axj(x)&—xj —2> f(x), (4.9
X=(Xq, - .. Xn). The drift on thejth particle is
j: - a—XJIn lﬂ (49)

Thus Iny is the potential for the diffusion process.
For Brownian steps with exclusion only, i.8/=0, one
finds that

N

tion

E(x, 1)+ \/— W(x t),
(4.19
which is a surprisingly minimal modification compared to

the short range cagé&q. (4.13]. y plays the role oD, and
c that of o. The crucial difference is that a Fourier moel&*

_ _ 2
decays a®~ "Xt rather than ag =Pkt

i t)= 3?1 9x?
at%(x,)— -y X“—vo

V. SCALING LIMIT

We support our general conjecture by arguing that the
stochastic particle evolution is close to the Langevin equa-

tion (4.14). We will do so on a fairly formal level. In par-

aj(x)zizg, ~cot(m(x;=x)/1). (4.10 ticular, we simply work in infinite volume. In the Appen-
dixes we explain how parts of our arguments can be made
For | —oo this expression converges to rigorous.
Our strategy is most easily explained for the Brownian
step model. The equations of motion are
ai(x):--z#- v— (4.10) p quati i
iLi#] Aj i

d .
i.e. to a repulsive ¥ force as for the lattice gas. The model axj(t):aj (x(t))+b;(t), (5.1

with drift (4.11) was introduced by Dysofi5]. Its potential
is formally given by

—E |n|X| Xj |

I¢]

Wherebj(t) is normalized white noise independent for each
j. The scaled fluctuation field satisfies then the differential
equations

(4.12

In fact, Dyson added a confining external potential, which is
quadratic, and considered Ed..11) for finite N.

We conclude that density fluctuations in the fermionic
ground state may equally well be studied through the sto-
chastic dynamicg4.3) and (4.9). If the potential is short
ranged, there is a well developed machinery known as hy-
drodynamic fluctuation theory. One arguémd proves in Herexj(t)=ex;(s~'t), and we used the scale invariance of
many model systemigl6,17)) that density fluctuations relax white noise ab; (e7)= \/—b (1).
diffusively and are driven by a white noise random flux. This The second term in Eq5 2) converges topfdx f’(x)
corresponds to the linear Langevin equation =0. The third term converges to a space-time Gaussian mea-

sure with covariance

f“’(f )= 2 fr(xe(t )aj(x€<t>)+82 f7(x?(1))

(5.2

+J§; £/ (x(1))bj(t).

—§(xt) D (xt)+\/_ WD), (4.13

5(t—t')pf dx ' (x)g’ (x). (5.3

D is the bulk diffusion coefficient, and is the bulk mobil-
ity. They are related througlr= YD with y the static com- This uses only that with respect to the distribution given by
pressibility of the lattice gasw(x,t) is space-time white |#|?> we haveeX; f(sX,)prde(X) in probability ase
noise. The spatial derivative ensures the conservation of the>0. Equation(5. 3) is in accordance with Eq4.14), since
number of particles. The stationary measure for @gl3 is  cy=p. Thus we are “only” left with to show thatrecall
Gaussian with a covariance matrix/2D). In passing we thatv=0)
mention that in the short range cagel3 holds only for\
=0, i.e. in the symmetric case. Far~0 one switches over
to the Kardar-Parisi-ZhangKPZ) universality class. It is
characterized by the dynamic exponemt 3/2, rather than
z=2 as in Eq.(4.13. The fluctuations are non-Gaussian
[19].

Returning to the long range case of interest here, we have
already obtained the limiting Gaussian fluctuations in thef so, the integrated version of E¢5.2) becomes a closed
conjecture. We writéf(f,t) = fdx f(x) £(x,t), and note that equation and agrees with E@t.14).

t
fods; f/(x¢(s))a;(x(s))ds

:—ftz_ yV= P ax?H(x(s))ds. (5.4
0]
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To establish Eq(5.4) is certainly the hard part of the from Eqg. (4.14). Note thatv=0, sinceA=0. By second
matter. In Appendix A we prove that, if we assume the two-order perturbation theory iR we obtain
point function to scale, the substituti¢®.4) holds. This is of
interest because the scaling of the two-point function by it- 5%e
self already implies that the fluctuations are Gaussian. | —222 P P(n°) (o= 11)?

; . 2N 7

would not know how to obtain such a result otherwise.

A further example for which the substituti@f.4) holds is
the Calogero-Sutherland modéi8], where the pair potential =2 2 W™ (o= m)(H-E)?
is proportional to 2. If the particles are on a ring),l | and o

if we take all the image potentials into account, then the _ xx+1
ground state wave fSnct?on of the Calogero-Sutherland X M )Y, .12
model is Thus Eq.(5.11) holds only if the second term vanishes.
N For A=0 the sumS, (74— 7y 1) ¥(7*1) is the total
: currentd acting ony. SinceJ¢=0, we conclude that for free
(ASSTRER ’XN):iqnzl |Sm(77(xi_xi)“)|ﬁ/2’ (6.5 fermions Eq.(g.ll)d%olds. Inl{[/his case the two-point function
is explicitely known and we can use the argument of Appen-
B>0. By Eq. (4.9 the corresponding drift is given by dix A to prove the conjecture. Alternatively timepoint den-

sity correlations can be written in terms of two-point func-

N
B ™ tions. By applying the closed loop theorem, one again
aj(Xyy - Xn)= 2 izlzm TCOt(W(Xi_Xi)/l)' (5.6 concludes that the scaling limit is Gaussian with covariance
(3.30 [14,22.
which in the limitl —o yields If A#0, the second term in E¢5.12) is not expected to
' vanish. This can be verified by expandind € E) ! to sec-
B 1 ond order inA. Thus the martingale terr(6.10 yields the
ai(X)=i:§¢j 2%-%" (5.7 wrong noise strength in the Langevin equation—the hall-

mark of the so-called nongradient systems. The drift term
Compared to Eq(4.8) only the strength is changed.

The ground state energy per lengthei&) = 2 82mw?p> ftds £ (ex)C -1 51
(note that our kinetic energy is-3A). Therefore, by Eq. 0 g (£X)Cxr1 (e 75)) ©.13
(3.26),
can no longer be substituted deterministically as in(Gg).
2 1 5g Somewhere hidden there must be an extra noise term. While
c= 77_,3 Y= EW'BP' (58 for short range lattice gases this mechanism is understood by

the beautiful work of Varadhan and Y4a1] (cf. also Ref.
For the Calogero-Sutherland model the substitution in Eq[23]), the situation looks rather complicated for the long
(5.9 holds without averaging in time. This is somewhat sur-range case considered here.
prising and very particular for the X7 potential. To com-
plete the argument one needs the central limit result of Jo-

hanssor{20], VI. CONCLUSIONS
Iim<exp{ >, f(ex))
o0 : (5.9 tions, and the hydrodynamic fluctuation theory for the sto-
chastic dynamics of world lines. In the surface picture one
for smooth test functions witfidx f(x) =0, where(-) isthe ~ can easily identify the universal low energy limit of the den-
average in the ground stat.5) in the infinite volume limit. ~ sity fluctuations for one-dimensional Fermi fluids. Of course,
The instructive computation is explained in Appendix B.  as an input one needs a variant of the Einstein fluctuation
Turning to the terrace-step-kink model the situation isformula. The remainder of the argument is then straightfor-
more complicated, as may be anticipated from the shorward. In particular, we show that the parameters of the
range exchange rat¢21]. We consider the symmetric case Tomanaga-Luttinger Hamiltonian must be matched to suit-
and set =0. Using the method of martingales one can show@ble second derivatives of the energy and length, cf. Egs.

that the variance of the time-integrated noise is given by (3.16. To our knowledge, this has not been discussed with
sufficient clarity before.

o1 ) In the interpretation of the world lines as stochastic dy-
(Cor(m)t= 277 P p(n) (o= )7 |t (510 pamics the particles have long range interactions, which re-

sult from the Dirichlet boundary condition at coinciding po-

which is to be compared with the prediction sitions and thus from the Pauli exclusion principle. We
develop a fluctuation theory for the long range case. In fact,

the Luttinger liquid behavior at low energy, surface fluctua-

11 A . ) . . . )
> _exﬁ{i _Bf dk|k||fk|2}, We tied together three, at first sight, disconnected pieces:

J2e the only modification is to replace in the drift term the La-
cy="—>, (5.1)  placian, —d%/9x?, by the nonlocal integral operator
I o J—3d%1ax%. Heuristically, following the arguments of To-
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managa, thék| decay comes from linearizing the dispersion [t t _ _

relation of the particles at the Fermi surface. The not soJOdsldeSz(ls(f',Sl)Js(f’,Sz)>

obvious point is that an interaction changes only the prefac-

tor y but not the decay law itself. At least for the Calogero- . .

Sutherlgnd Hamiltonian, the mechamsm behind such a renor- :j dsl( j 1d82<j8(f,)el.(sl—sz)aflja(f,»
malization could be fully elucidated. 0 0

t
ie(f1\alk(s —s)s’l-s ’
ACKNOWLEDGMENT +le32<1 (fr)e-s27s0e Tje(f )>)
| thank M. Praofer for most helpful discussions. t 5
S —_
=f ds; —f ldsz—(js(f’)eL(SfSZ)s lns(f))
0 0 (952
APPENDIX A

t J _
For the Brownian steps we define the structure function +f dsza—<j8(f’)eL(52*51)’3 1na(f)>>
S(k,t) by s %2

t 9 1
<(E f(X;(U))(E g(x,-))>=f dk f(k)*g(k)S(k,t), =—2t<i£(f’)n8(f)>+2f dsgng(f)e“‘g n®(f))
] i 0

(A1)
= —21(j(1")n°(f))+ 2(n°(F,0)n(f))

with fdx f(x)=0=fdx g(x). The average is in the station-
ary process at infinite volume with densijty The existence —2(n*(f)n*(f)). (A5)
of this limit and its spatial ergodicity is assumed here. In
principle, this could be avoided by considering a finite circleggy the first summand we have
of lengthl, for which the stationary process exists, and by
scalingl=¢ " 1p ! andN=¢"1. We adopt this strategy for 1 P P
the Calogero-Sutherland model in Appendix B. In essence, (js(f’)ng(f))=—s*1§ 2 —ne(f)—ns(f)>.

Fourier space becomes then discréte 2 77Z. T\ 9X] 9%

Our real assumption is the scaling of the structure func- (AB)
tion as Therefore, in the limit:—0 we obtain
lime~S(ek,e ~1t) = E|k|e‘ il (A2) :
e Stekee 0= ’ [ aniraizo—clk-e ). a7

with c=/p/e”, and y=pe”. We want to prove that Eq. The second term reads, with= — y/— 3%/ 9x2f,
(A2) implies

t t
—2J0d31f0d52<n (9,81)]°(f",52))

e—0

t
|im<“ods; a;(x*(s))f'(x{(s))

0

+ Ltds; Y= P19x2F (X (s))

t $1 _
2>:0_ =2 fodsl{ f dsy(n®(g)e-Cr 2 (1))

A3 t
( ) +J dsz(je(f’)e'-(SZ_Sl)s1n8(g)>}
We note that the time average is needed. This reflects that the 51
system takes a while to adjust to local perturbations.
We work out the square and use tHatis symmetric, =—2ftdsl
0

B f s, (ne(g)e-r 5 ne 1)
(F(LG))=(G(LF)), and 0 Sy

1
I(F)00=3 a0t o)+ 2 51" (x)=Ln(F)(x), +J‘d52i<j8(f/)eusz—spe1n8(g)>}
] ] s, 0Sp
(A4)

t -1
n(f)(X)=§j) f(x;). :—2fods[—2<n8(g)n8(f)>+2<n8(g)eL58 n®(f))].

Under our scaling the term(f”) vanishes. We have (A8)
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By assumption, this expression converges to 9 B N
3j(x)=— - BV(X) =3 2}1 cot(x;—x)/2).  (B2)
f dk f|2(— 2tyck?+2|k|c(1—e 7KYy),  (A9) : i#i

For this model we show the validity of substitutiqb.4)
without averaging irt.

The third term is given by More explicitly, we have to show that

t t
ds J dsy(n®(g,s1)n°(g,S,)), (A10) 1N 1 N
jo *Jo ! 2 = a(0f (x)=5= > Beot(x;—x)/2)F (x))
N j=1 2N ihj=1
which by assumption converges to N e
t t - c = Xi), B3
fdsJ dszf dk/F[2y? 5|3 Kls =] 121 90) 59
0 0 2
where
=f dk|f|2(tyck®—clk|(1—e~7KY).  (A11) B (o
g(X)=Efo dy cot((x—y)/2)f'(y), (B4)

Using the fact thatyc=p, the sum of the three terms van-
ishes, as claimed. in the sense of the Cauchy principal part. Since we are on a
To complete the argument, one notes that . . . . -
ring, f has discrete Fourier coefficients f,
t =(1/2m) [§7dx €F(x). We assume thats k|3 <.
e _ . -1 . 2 ~
M (f,t)—fods; flex;(e"7s))dby(s)  (A12) Note thatg,=—(B/2)|k|fy. To show Eq.(B3) we use a
result of Johanssof20] which states
is a Martingale function with square

1 N
t lim —( > h(x4)>=ﬁo, (B5)
M(f,t)2=f dse Y, f'(ex;(e~1s))*+Mi(f,1), N—so N<11 .
0 ]
(A13)  and, providech,=0="f,,
whereMi(f,t) is again a Martingale function. We now as- N N 2
sume the validity of a law of large numbers as lim < ( > h(x,)) ( > f(xi)) > =3 > |k|hEf,.
N— oo =1 i=1 k
. B6
lim sE g(sz)Ipf dx g(x). (A14) (B6)
e—~0 Let us work out the square. The first term is
Then, under suitable tightness, in the limit>0 N 2
<(§l g(xj)) > (87)
M(f,t)zztf dx f'(x)%+My(f,1), (A15)
which by Eq.(B6) tends in the limitN—< to
with both M(f,t) and M,(f,t) Martingale functions. This 5
implies thatM (f,t) is Brownian motion irt with covariance - |k||§k|2=é R (B8)
fdx f'(x)2. We refer to Ref[18] for a more complete dis- B X 2%k
cussion.
For the second term we usé/gx;)e #V=a,e #V. Then
1 N N
APPENDIX B _2N<<2 ajf’(xj))(z g(xi))>
=1 i=1

We consider the Calogero-Sutherland model on a finite

ring of lengthl. The density iso=N/I. We scale the posi- 5 N 9
tions with e 1. Settinge =2/I, we scale back to the circle =— > <_(f’(XA)g(Xi))>
[0,27r]. ThenN=¢ " 127p. Since the density scales, we set Ni7=1 | 9% :
2mp=1 and useN instead ofe. After these transformations
the ground state/’=e#Y with the logarithmic potential 2 [(N N
= N< ( 2 f"(Xj)> (2 Q(Xi)) >
N =1 =1
V=— > . In|sin((x; —x;)/2)|. (B1)

i<j= 2 N
+ <JZI f’(xj)g'(xj)>. (B9)

Z|

The drift is then
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By Eq. (B6) the first summand vanishes, and by E5) the
second summand converges to

22 K*Fige=—282 [KPIf% (B1O

For term number 3 we used{/dx;ox;)e” #V=a;a;e” Y
+(da;l9x;)e #Y. Then

N N

_<<,-21 ajf’(xj))(E aif’(xi)>> (B11)
NS

== 2 <——<f’<xi>f'<x,->)
=1

£7Xi (9]

g

f'(Xi)f'(Xj)>

HERBERT SPOHN

PRE 60

N N
+<j21 fr/(xj)2> +2<j21 fr(xj)f/rr(xj)>)

1

+N2

®|™®

N
< > |sin((xi—x;)/2)| 2

ij=1

><[1”(Xi)—f'(Xj)]2> :

By Eg. (B5) the first summand vanishes. The second sum-

mand converges to

2 2m
Som [ “ax[ Tayisinoeyal 00— 1)y

N

Ek k|3 T2 (B12)

Adding the three terms we conclude that the sum vanishes.
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